Integrable Evolution Equations on Spaces of Tensor Densities and Their Peakon Solutions
نویسنده
چکیده
We study a family of equations defined on the space of tensor densities of weight λ on the circle and introduce two integrable PDE. One of the equations turns out to be closely related to the inviscid Burgers equation while the other has not been identified in any form before. We present their Lax pair formulations and describe their bihamiltonian structures. We prove local wellposedness of the corresponding Cauchy problem and include results on blow-up as well as global existence of solutions. Moreover, we construct “peakon” and “multi-peakon” solutions for all λ 6= 0, 1, and “shock-peakons” for λ = 3. We argue that there is a natural geometric framework for these equations that includes other well-known integrable equations and which is based on V. Arnold’s approach to Euler equations on Lie groups.
منابع مشابه
On the Non-integrability of the Popowicz Peakon System
We consider a coupled system of Hamiltonian partial differential equations introduced by Popowicz, which has the appearance of a two-field coupling between the Camassa-Holm and Degasperis-Procesi equations. The latter equations are both known to be integrable, and admit peaked soliton (peakon) solutions with discontinuous derivatives at the peaks. A combination of a reciprocal transformation wi...
متن کاملVirasoro Action on Pseudo-differential Symbols and (Noncommutative) Supersymmetric Peakon Type Integrable Systems
Using Grozman’s formalism of invariant differential operators we demonstrate the derivation of N = 2 Camassa-Holm equation from the action of V ect(S1|2) on the space of pseudo-differential symbols. We also use generalized logarithmic 2-cocycles to derive N = 2 super KdV equations. We show this method is equally effective to derive Camassa-Holm family of equations and these system of equations ...
متن کاملG - Strands and Peakon Collisions on Diff ( R ) ?
A G-strand is a map g : R × R → G for a Lie group G that follows from Hamilton’s principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1 + 1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics f...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملA Synthetical Two-Component Model with Peakon Solutions
A generalized two-component model with peakon solutions is proposed in this paper. It allows an arbitrary function to be involved in as well as including some existing integrable peakon equations as special reductions. The generalized two-component system is shown to possess Lax pair and infinitely many conservation laws. Bi-Hamiltonian structures and peakon interactions are discussed in detail...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009